137 research outputs found

    Effects of kraft mill effluent on riffle community metabolism in a large river

    Get PDF

    A Global Land System Framework for Integrated Climate-Change Assessments

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Land ecosystems play a major role in the global cycles of energy, water, carbon and nutrients. A Global Land System (GLS) framework has been developed for the Integrated Global Systems Model Version 2 (IGSM2) to simulate the coupled biogeophysics and biogeochemistry of these ecosystems, as well as the interactions of these terrestrial processes with the climate system. The GLS framework has resolved a number of water and energy cycling deficiencies and inconsistencies introduced in IGSM1. In addition, a new representation of global land cover and classification as well as soil characteristics has been employed that ensures a consistent description of the global land surface amongst all the land components of the IGSM2. Under this new land cover classification system, GLS is run for a mosaic of land cover types within a latitudinal band defined by the IGSM2 atmosphere dynamics and chemistry sub-model. The GLS shows notable improvements in the representation of land fluxes and states of water and energy over the previous treatment of land processes in the IGSM1. In addition, the zonal features of simulated carbon fluxes as well as key trace gas emissions of methane and nitrous oxide are comparable to estimates based on higher resolution models constrained by observed climate forcing. Given this, the GLS framework represents a key advance in the ability of the IGSM to faithfully represent coupled terrestrial processes to the climate system, and is well poised to support more robust two-way feedbacks of natural and managed hydrologic and ecologic systems with the climate and socio-economic components of the IGSM2.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors

    Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America

    Get PDF
    We use the terrestrial ecosystem model (TEM), a process-based model, to investigate how interactions between carbon (C) and nitrogen (N) dynamics affect predictions of net primary productivity (NPP) for potential vegetation in North America. Data on pool sizes and fluxes of C and N from intensively studied field sites are used to calibrate the model for each of 17 non-wetland vegetation types. We use information on climate, soils, and vegetation to make estimates for each of 11,299 non-wetland, 0.5° latitude × 0.5° longitude, grid cells in North America. The potential annual NPP and net N mineralization (NETNMIN) of North America are estimated to be 7.032 × 1015 g C yr−1 and 104.6 × 1012 g N yr−1, respectively. Both NPP and NETNMIN increase along gradients of increasing temperature and moisture in northern and temperate regions of the continent, respectively. Nitrogen limitation of productivity is weak in tropical forests, increasingly stronger in temperate and boreal forests, and very strong in tundra ecosystems. The degree to which productivity is limited by the availability of N also varies within ecosystems. Thus spatial resolution in estimating exchanges of C between the atmosphere and the terrestrial biosphere is improved by modeling the linkage between C and N dynamics. We also perform a factorial experiment with TEM on temperate mixed forest in North America to evaluate the importance of considering interactions between C and N dynamics in the response of NPP to an elevated temperature of 2°C. With the C cycle uncoupled from the N cycle, NPP decreases primarily because of higher plant respiration. However, with the C and N cycles coupled, NPP increases because productivity that is due to increased N availability more than offsets the higher costs of plant respiration. Thus, to investigate how global change will affect biosphere-atmosphere interactions, process-based models need to consider linkages between the C and N cycles

    Are Land-use Emissions Scalable with Increasing Corn Ethanol Mandates in the United States?

    Get PDF
    In response to the Renewable Fuel Standard, the U.S. transportation sector now consumes a substantial amount (13.3 billion gallons in 2010) of ethanol. A key motivation for these mandates is to expand the consumption of biofuels in road transportation to both reduce foreign oil dependency and to reduce greenhouse gas (GHG) emissions from the consumption of fossil fuels in transportation. In this paper, we present the impacts of several biofuels expansion scenarios for the U.S. in which scaled increases in the U.S. corn ethanol mandates are modeled to explore the scalability of GHG impacts. The impacts show both expected and surprising results. As expected, the area of land used to grow biofuel crops increases with the size of the policy in the U.S., and some land-use changes occur abroad due to trade in agricultural commodities. Because the land-use changes happen largely in the U.S., there is an increase in U.S. land-use emissions when natural lands are converted to agricultural use in the policy scenarios. Further, the emissions impacts in the U.S. and the rest of the world in these scenarios, including land-use emissions, scale in direct proportion to the size of the U.S. corn ethanol mandates. On the other hand, the land-use emissions that occur in the rest of the world are disproportionately larger per hectare of change due to conversions of more carbon-rich forests to cultivate crops and feed livestock.We gratefully acknowledge the financial support for this work from the U.S. Department of Energy, Office of Science under DE-FG02-94ER61937, the U.S. Environmental Protection Agency under XA-83600001-1 and XA-835055101-2, and other government, industry, and foundation sponsors of the Joint Program on the Science and Policy of Global Change

    Green House Gas Mitigation Policy, Bio-fuels and Land-use Change- a Dynamic Analysis

    Get PDF
    Research and Development/Tech Change/Emerging Technologies, Resource /Energy Economics and Policy,

    Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4028, doi:10.1029/2009GB003519.Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.We also acknowledge the financial support of the National Aeronautics and Space Administration Land Cover and Land Use Change Program (NNX08AK75G)

    Land carbon sequestration within the conterminous United States : regional- and state-level analyses

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 120 (2015): 379–398, doi:10.1002/2014JG002818.A quantitative understanding of the rate at which land ecosystems are sequestering or losing carbon at national-, regional-, and state-level scales is needed to develop policies to mitigate climate change. In this study, a new improved historical land use and land cover change data set is developed and combined with a process-based ecosystem model to estimate carbon sources and sinks in land ecosystems of the conterminous United States for the contemporary period of 2001–2005 and over the last three centuries. We estimate that land ecosystems in the conterminous United States sequestered 323 Tg C yr−1 at the beginning of the 21st century with forests accounting for 97% of this sink. This land carbon sink varied substantially across the conterminous United States, with the largest sinks occurring in the Southeast. Land sinks are large enough to completely compensate fossil fuel emissions in Maine and Mississippi, but nationally, carbon sinks compensate for only 20% of U.S. fossil fuel emissions. We find that regions that are currently large carbon sinks (e.g., Southeast) tend to have been large carbon sources over the longer historical period. Both the land use history and fate of harvested products can be important in determining a region's overall impact on the atmospheric carbon budget. While there are numerous options for reducing fossil fuels (e.g., increase efficiency and displacement by renewable resources), new land management opportunities for sequestering carbon need to be explored. Opportunities include reforestation and managing forest age structure. These opportunities will vary from state to state and over time across the United States.This work was supported by NSF grants 104918, 1137306, and 1237491; EPA grant XA-83600001-1; and DOE grant DE-FG02-94ER61937.2015-08-2

    Predicting the effects of climate change on water yield and forest production in the northeastern United States

    Get PDF
    Rapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region

    Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kicklighter, D. W., Melillo, J. M., Monier, E., Sokolov, A. P., & Zhuang, Q. Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia. Nature Communications, 10, (2019): 3024, doi: 10.1038/s41467-019-10944-0.Nitrogen (N) availability exerts strong control on carbon storage in the forests of Northern Eurasia. Here, using a process-based model, we explore how three factors that alter N availability—permafrost degradation, atmospheric N deposition, and the abandonment of agricultural land to forest regrowth (land-use legacy)—affect carbon storage in the region’s forest vegetation over the 21st century within the context of two IPCC global-change scenarios (RCPs 4.5 and 8.5). For RCP4.5, enhanced N availability results in increased tree carbon storage of 27.8 Pg C, with land-use legacy being the most important factor. For RCP8.5, enhanced N availability results in increased carbon storage in trees of 13.4 Pg C, with permafrost degradation being the most important factor. Our analysis reveals complex spatial and temporal patterns of regional carbon storage. This study underscores the importance of considering carbon-nitrogen interactions when assessing regional and sub-regional impacts of global change policies.This research was supported by the US National Aeronautics and Space Administration (NASA) Land-Cover and Land-Use Change (LCLUC) Program grant NNX14AD91G. The Joint Program on the Science and Policy of Global Change is funded by a number of federal agencies and a consortium of 40 industrial and foundation sponsor (for the complete list see http://globalchange.mit.edu/sponsors)
    • …
    corecore